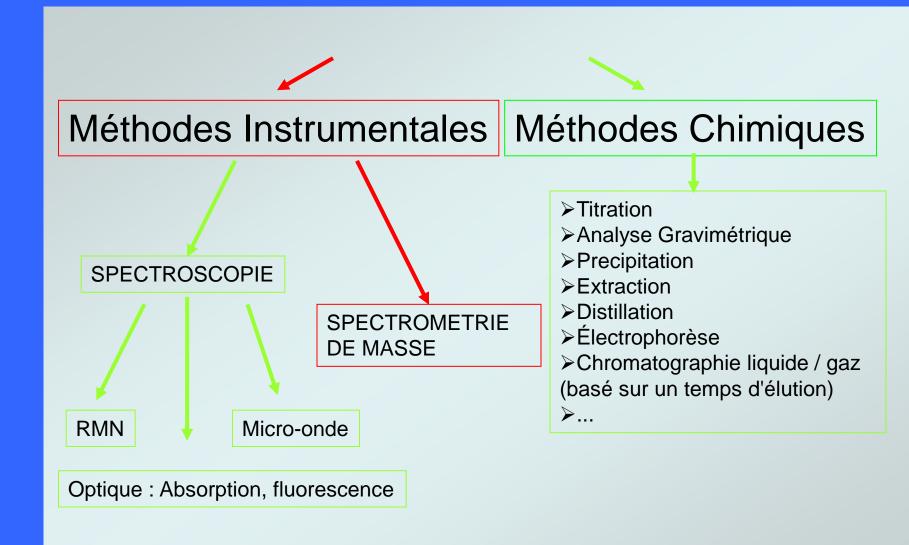
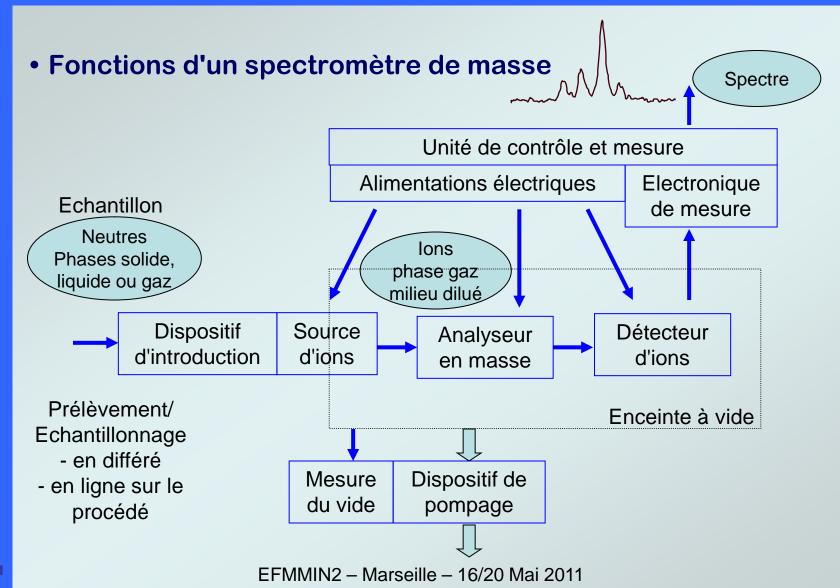
Principes de Spectrométrie de Masse Application à la mesure en ligne du relâchement des gaz de fission

Par Pr. Yves ZEREGA Université de Provence – Marseille

Inseignant à

In


Sommaire

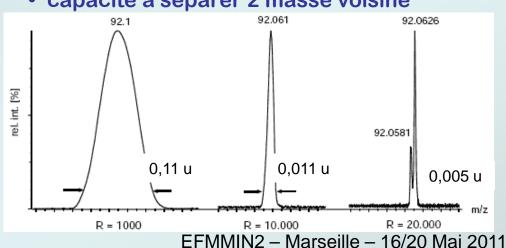

- 1 Chimie analytique
 - Généralités
 - Méthodes de chimie analytique
- 2 Spectrométrie de masse
 - Structure d'un spectromètre de masse
 - Objectifs de la spectrométrie de mase
- 3 Source d'ions par impacts électroniques
- 4 L'Analyseur en masse
 - Types
 - Le Temps de Vol
 - Le Quadripôle Linéaire
 - Le Piège à lons
- 5 Les Détecteurs d'ions
- 6 Les Dispositifs de pompage
- 7 Application à la Mesure des Gaz de Fission

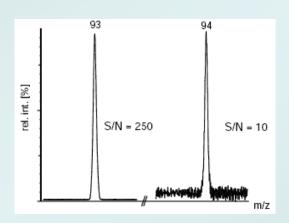
Chimie Analytique

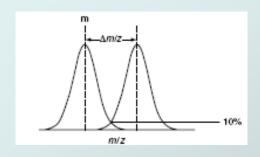
- Etude de la séparation, l'identification et la quantification de composés naturels ou artificiels
- Séparation
 - première phase
 - des composés indésirables (matrice)
 - vis à vis des composés ciblés (analyte)
 - enrichissement des composés ciblés
 - **–** ...
- Identification
 - détermine le(s) composé(s)
- Quantification
 - donne la quantité de chaque composé

Méthodes de Chimie Analytique

- Objectif : C'est "peser" des composés : atomes ou molécules ciblés
 - Identification
 - donner la masse et/ou la structure (MSn)
 - Quantification
 - donner la quantité des composés
 - relative 100% / au plus abondant
 - "en absolu"
 - Étalonnage
- Comment ? : Principe général
 - Basé sur une séparation du m/z d'ions
 - Utilise des champs électromagnétiques
 - Induisent une force sur les ions

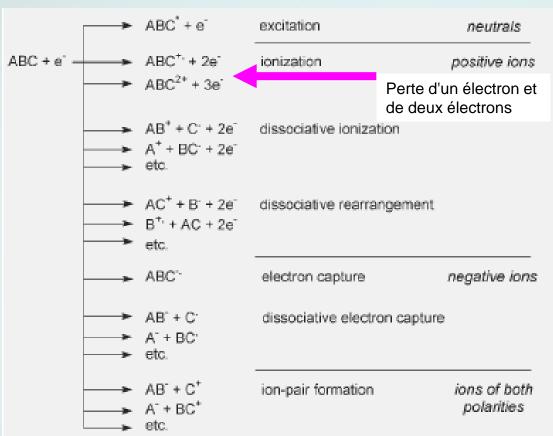

Fonctionne "sous vide"


- Collisions avec neutre =>
 - effet néfaste : perturbation des trajectoires, ...
 - ou effet bienfaisant : Refroidissement, CID, ...
- Pression de travail
 - P = 10⁻³ à 10⁻⁹ torr (ou mm Hg) selon le type et l'étage de l'analyseur
 - de 1.33 10⁻⁶ à 1.33 10⁻¹² bar
- Ordres de grandeur pour l'air à T ambiante

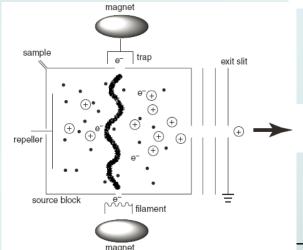

P (mbar)	P (torr)	Densité volumique (M/cm³)	Libre parcours moyen λ α P-1	Régime du flux
1000 - 1	750 - 0,75	10 ¹⁹ - 10 ¹⁶	100 nm -100μm	Visqueux
1 - 10 ⁻³	0,75 - 0,75 10-3	10 ¹⁶ - 10 ¹³	100 µm -10 cm	De Knudsen
10 ⁻³ - 10 ⁻⁷	0,75 10 ⁻³ - 0,75 10 ⁻⁷	10 ¹³ - 10 ⁹	10 cm -1 km	Moléculaire

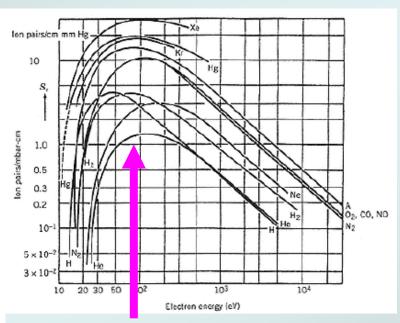
Caractéristiques

- Plage de Masse Analysable
- Vitesse d'analyse
 - nb spectres/unité de temps
- Sensibilité ou Rapport Signal sur Bruit
- Précision en Masse ∆m_e/m
 - où Δm_e = erreur mesure masse
- Résolution en masse (m/∆m)
 - capacité à séparer 2 masse voisine



Source d'ions par impacts électroniques


- Impacts électroniques
- Ionisation d'Atomes et Molécules en phase gaz
- Différentes voies selon l'énergie de l'électron incident
 - Neutre excité
 - lons positifs
 - lons négatifs
 - lons positifs% négatifs



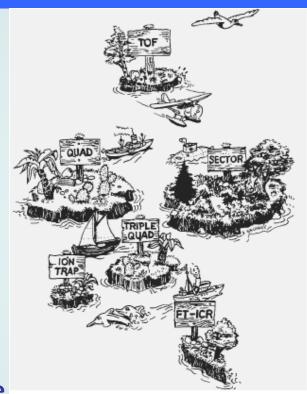
Source d'ions par impacts électroniques

- Efficacité d'ionisation
 - Energie de l'électron incident
 - Maximum entre qq dizaines et centaine d'eV

Source typique à 70 eV

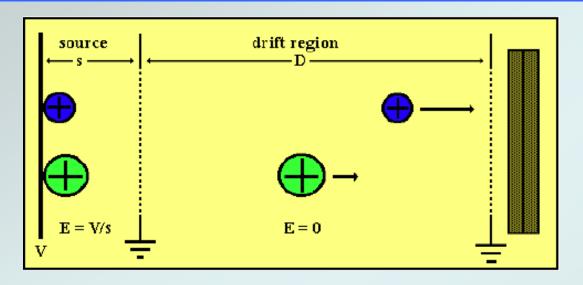
Analyseur en masse

- 16/20 Mai 2011


70 eV

-10-

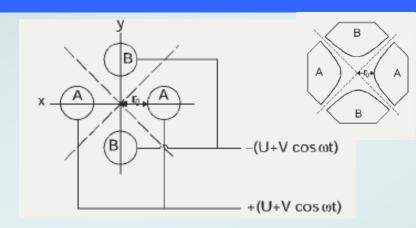
Analyseurs en masse


- Quelques types d'analyseur en masse
 - Champ magnétique
 - Secteurs magnétiques
 - Champ magnétique + électrodynamique
 - Cellule par résonance cyclotron (ICR)
 - Champ électrostatique
 - Temps de Vol (TOF)
 - Orbitrap
 - Champ électrodynamique radiofréquence
 - Quadripôle linéaire ou filtre de masse (mass filter)
 - Piège à ions quadripolaire 3D, 2D (ion Trap)

– ...

Mass spectrometer islands. A cartoon by Brunnée, C. The Ideal Mass Analyzer: Fact or Fiction? Int. J. Mass Spectrom. Ion Proc. 1987, 76, 125-237.

Le Temps de Vol


Principe

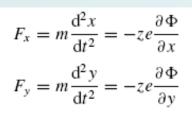
- Source
 - · Les ions sont formés de manière pulsée
 - Ils sont accélérés
- Le tube de vol est à champ nul
- On mesure les instants d'arrivée des ions sur le détecteur
- Le temps de vol dépend du m/z des ions
- Minimiser s; augmenter V & D

$$t = \left(\frac{m}{2eV}\right)^{1/2} D$$

Electrodes

- 4 barres parallèles
- Soit de section hyperbolique
- Soit cylindrique

Potentiel appliqué sur les électrodes


- Continu + alternatif radiofréquence
- Identique sur une paire opposée
- Opposé sur les deux paires (directions x et y)

• Forme du potentiel entre les électrodes

- Si Infinies et De forme & de position parfaites
- Défini un champ quadripolaire sur le plan (x,y)

$$\Phi_{(x,y)} = \Phi_0(x^2 - y^2)/r_0^2 = (x^2 - y^2)(U - V\cos\omega t)/r_0^2$$

- Forces induites par le champ électrique sur une particule de rapport m/z
 - dans le plan (x,y)
 - sur l'axe 0z force = 0

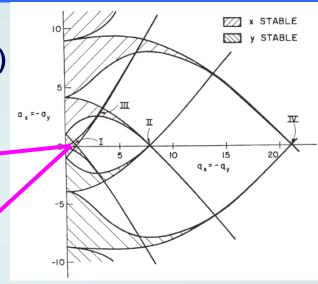
- Equations du mouvement (selon 0x et 0y)
 - Équations découplées car champ quadripolaire

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{2ze}{mr_0^2} (U - V \cos \omega t) x = 0$$
$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{2ze}{mr_0^2} (U - V \cos \omega t) y = 0$$

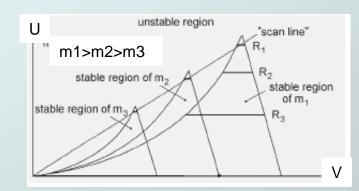
Equation de Mathieu pour 0x et 0y

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} + (a_u - 2q_u \cos 2\xi) u = 0$$


- en posant

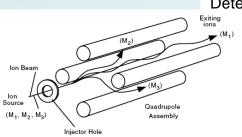

$$\xi = \frac{\omega t}{2}$$

$$a_u = a_x = -a_y = \frac{8zeU}{m\omega^2 r_0^2}$$


$$q_u = q_x = -q_y = \frac{4zeV}{m\omega^2 r_0^2}$$

- Stabilité des solutions dans le plan (a,q)
 - Sur 0x et 0y à la fois
 - Dépend des paramètres physiques
 - Diagramme de stabilité principal
 - Plus grande zone
 - Tensions de faibles amplitudes

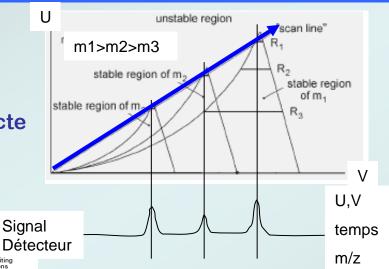
- Stabilité dans le plan (U,V)
 - Diagrammes de stabilité homothétiques
 - m1>m2>m3 (pour z=1)

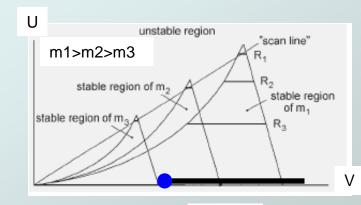


Modes opératoires

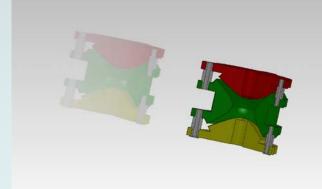
- Mode "mass scanning"
 - Balayage temporel tel que U/V = cte
 - Stabilité des trajectoires radiales
 - => passage des ions et détection

 Stabilité sélective car on passe sur la corne des diagrammes


de stabilités



EFMMIN2 - Marseille - 16/20 Mai 2011

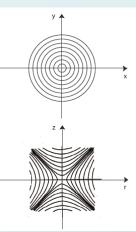

- U = 0 et V = cte
- Mode transmission passe haut
- Guide d'ions

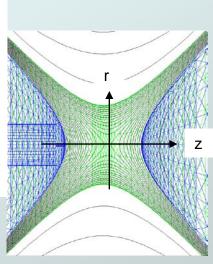
Electrodes

- Une couronne
- Deux chapeaux
- De forme hyperboloïdale

Potentiel appliqué sur les électrodes

- Continu et alternatif radiofréquence
- Une configuration
 - Couronne


$$\phi_0 = U + V \cos \Omega t$$


• Chapeaux = 0

Forme du potentiel entre les électrodes

- Si Infinies
- Et de forme & de position parfaites

$$\phi(x, y, z, t) = \frac{U_0 + V_0 \cos \Omega t}{2} - \frac{U_0 + V_0 \cos \Omega t}{2} \left(\frac{2z^2 - (x^2 + y^2)}{2z_0^2} \right)$$

Forme des équipotentielles dans le plan (x0z)

- Equation du mouvement
 - Une particule chargée de rapport m/z

$$m\frac{d^2\overrightarrow{u}}{dt^2} = -Ze \ \overrightarrow{\operatorname{grad}}\phi$$

 Equations découplées selon les trois directions

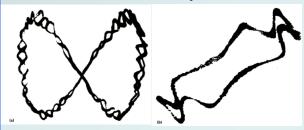
$$\frac{d^2x}{dt^2} + \frac{Ze}{2mz_0^2} (U_0 + V_0 \cos \Omega t) x = 0$$

$$\frac{d^2y}{dt^2} + \frac{Ze}{2mz_0^2} (U_0 + V_0 \cos \Omega t) y = 0$$

$$\frac{d^2z}{dt^2} - \frac{Ze}{mz_0^2} (U_0 + V_0 \cos \Omega t) z = 0$$

Equation de Mathieu

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\tau^2} + (p_u - 2q_u \cos 2\tau)u = 0$$

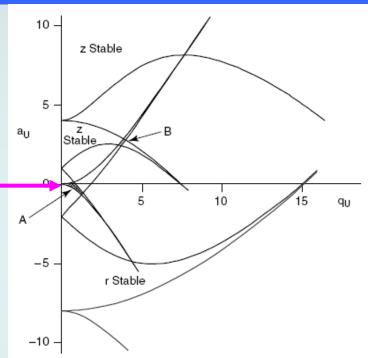

En posant

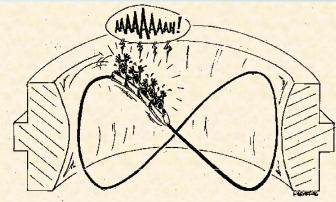
$$p_u = p_z = -2p_x = -2p_y = +\frac{8ZeU_0}{m\Omega^2 r_0^2}$$

$$\Omega t = 2\tau \qquad q_u = q_z = -2q_x = -2q_y = -\frac{4ZeV_0}{m\Omega^2 r_0^2}$$

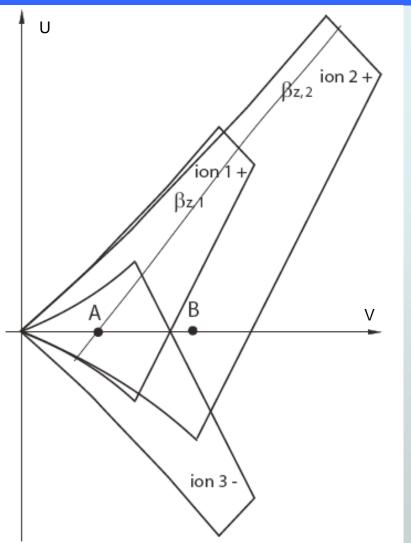
$$\Omega t = 2\tau$$

- Stabilité des solutions
 - Stabilité
 - sur le plan radial
 - et sur l'axe 0z
 - Diagramme principal de stabilité
- Solutions / Trajectoires stables
 - mouvement périodique dans chaque direction

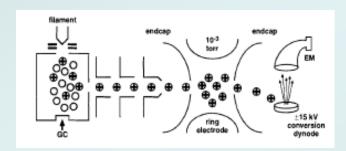

Trajectoire stable dans le plan (x0z)

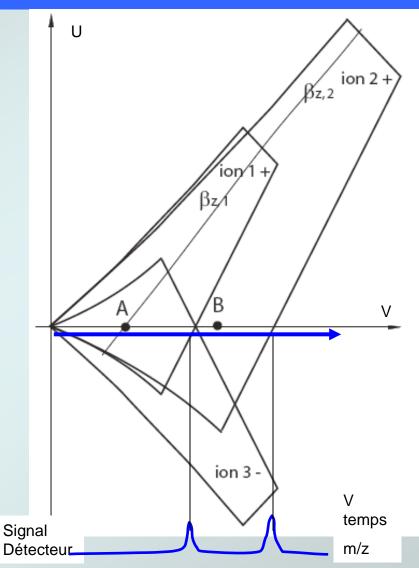


- Fréquence principale / séculaire =
- Autres fréquences =


$$\omega_u = \beta_u \frac{\Omega}{2}$$

$$\omega_u - \Omega$$
, $\omega_u + \Omega$, $\omega_u - 2\Omega$, $\omega_u + 2\Omega$, ...



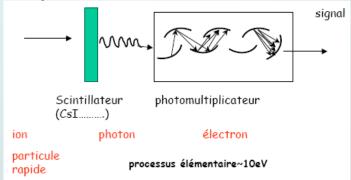

- Stabilité dans le plan (U,V)
 - Diagramme principal 3 masses
 - -m2 > m1 = m3
 - -z1 = z2 = +1 et z3 = -1
 - Homothétiques
 - Point de fonctionnement A
 - 3 masses confinées
 - \(\omega 1 > \omega 2\)
 - Point de fonctionnement B
 - m2 seulement confinée

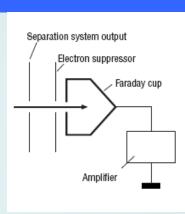
Analyse en masse

- Mode d'éjection par instabilité des trajectoires axiales
- Balayage de la tension V
- Détecteur
 - Channeltron
 - Placé après un chapeau

Les Détecteurs d'Ions

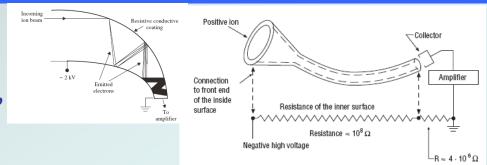
Cage de Faraday


- Mesure d'un courant
 - Les ions heurtent le fond, se neutralisent en donnant ou récupérant un électron
 - Ce courant est ensuite amplifié et mesuré



- Emission d'électrons secondaires
 - Les ions heurtent la 1ere Dynode de conversion qui génère plusieurs électrons, etc ...

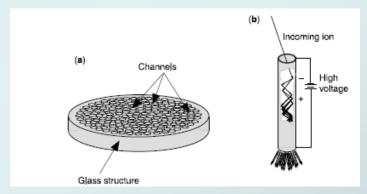
- Le courant électronique final est amplifié.
- Photo multiplicateur
 - Emission de photons puis d'électrons

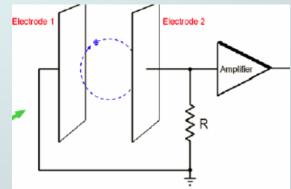


Les Détecteurs d'Ions

Channeltron

- Surface semi-conductrice, dynode continue
- Simple collecteur

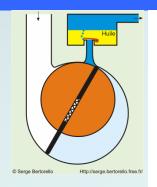


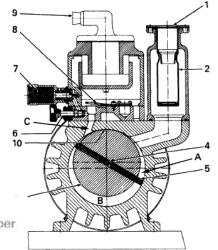

Galette multi canaux (MCP)

- Dynode continue
- Multi collecteurs=> discrimination spatiale

Détection par "courant image"

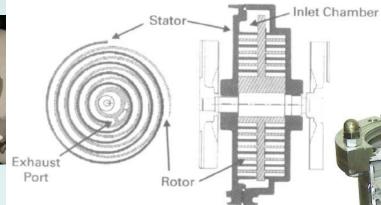
- Le mouvement des ions induit un courant détectable entre deux électrodes d'un dispositif de confinement
- Utilisé dans les piège à ions 3D et les cellules ICR avec TF



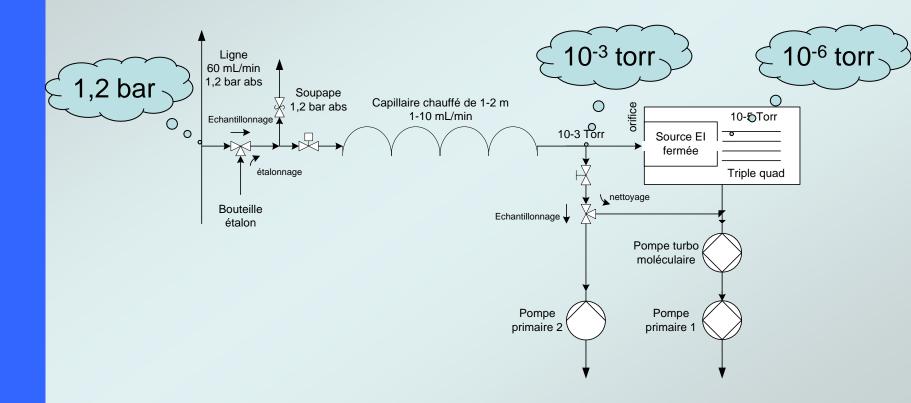


Les Dispositifs de pompage

- Pompe primaire (vide limite 10-2 à 10-3 torr)
 - A palette excentrique



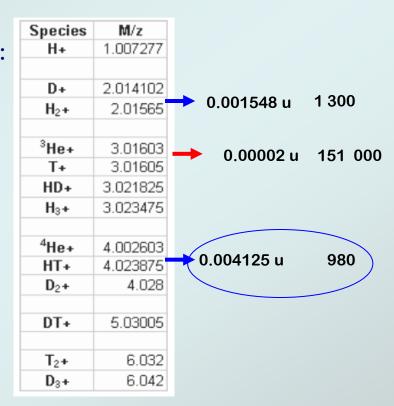
- Sèche à spirales


- Pompe secondaire (vide limite < 10-9 torr)
 - Turbo moléculaire

La Mesure des Gaz de Fission

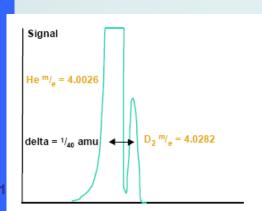
- Expériences de mesure en ligne de la cinétique du relâchement des gaz de fission
 - En condition post irradiatoire
 - Sous irradiation, en réacteur de recherche
- Exigences de la mesure
 - Faible concentration (10⁸ à 10¹⁰ atomes/cm³)
 - Temps réel = 1 min
 - Large plage de masse (de 2 à 100 u)
 - H₂, HT, He, CO, CO₂, Ne, Ar, Kr, Xe, ...
 - En ligne, dans flux de gaz
 - matrice : Ar
 - autres composés, ...
 - P de 1 à 2 atm

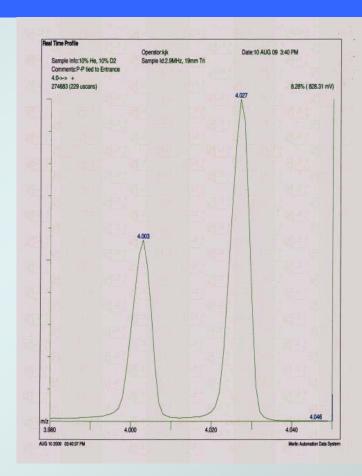
Un Dispositif d'échantillonnage des gaz et de pompage


• Exemple de dispositif d'échantillonnage des gaz à double étage de pompage

Problématique générale de l'analyse des faibles masses

- Isotopes de H et He
- Des masses de 1 à 6 u
- Exemple de m/z d'ions positifs à détecter :


- Quelques
 - Écarts de masse à détecter
 - Résolutions requises

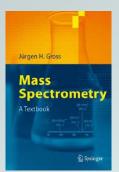

Ref: W. A. Spencer and L. L. Tovo, Miniature Mass Spectrometers for Hydrogen Isotopic Analyses Westinghouse Savannah River Company Aiken, SC 29808

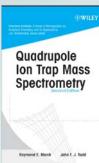
Spectromètre de masse pour l'analyse des faibles masses

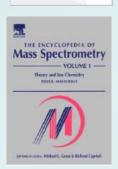
- Analyse He / D₂
 - Séparé par 0.026 u
 - Résolution requise >= 160
- Exemples de spectromètres commercialisés
 - Type
 - Triple Quad Linéaire
 - Modèles
 - MAX60™ / MAX120™ de Extrel
 - MicroVision Plus de MKS Instruments

MKS Instruments = http://www.mksinst.com

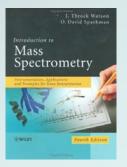
Extrel = http://extrel.com/

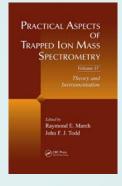

Conclusion

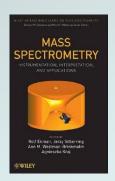

- Dispositifs de spectrométrie de masse commercialisés en ligne & temps réel
 - Limités en résolution et sensibilité
- Dispositifs de spectrométrie de masse et produits de fission
 - Peu de mesure en ligne par Spectrométrie de Masse
 - Travaux de recherche majoritairement pour la mesure dans le ciel des réacteurs de recherche de Gen IV
- Dispositif d'analyse en ligne des gaz de fission
 - Plusieurs principes d'analyseur
 - Piège à ions
 - Quadripôle linéaire
 - Plusieurs analyseurs en parallèle
 - Spécialisés dans des plages de mesures différentes
 - Miniaturisés
 - Simples et robustes
 - Nucléarisables

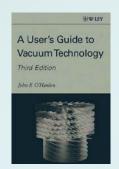

26/05/2011

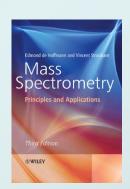
Bibliographie


Livres

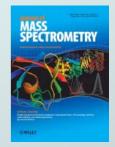








Journaux



Merci

Au comité d'organisation Aux collègues de travail A vous tous pour votre attention