

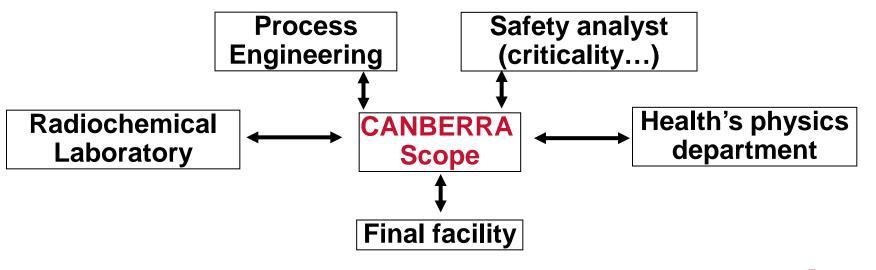
Instrumentation and methods : Stakes and perspectives for the fuel cycle

H. TOUBON

Development Director, European R&D coordinator CANBERRA France N. MENAA R&D Project Manager CANBERRA France

Table of content

- 1. Main stakes and applications in the nuclear fuel cycle
- 2. Front end fuel cycle
 - Mining, conversion, enrichment
- 3. Fuels and reactors
- 4. Back End
 - Transportation, Reprocessing and MOX fabrication
- **5.** Conclusion
 - Which strategic orientation for nuclear measurement in the future


1. Main stakes and applications in the nuclear fuel cycle

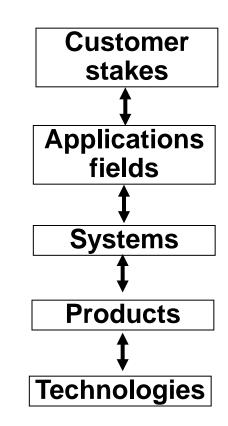
Use of nuclear measurement

Domains of application of nuclear measurements

- Fundamental Research
- Medicine
- Cultural applications
- Agribusiness
- Nuclear industrial application

Main customer stakes

In support of working operations for


- Mass evaluation statement
- Nuclear control of the process

Safety risk

- Environmental impact
- Health's physics
- Criticality
- Decay heat

Waste characterization

From very low level to very high level waste

The main current applications for nuclear measurement

Process and waste

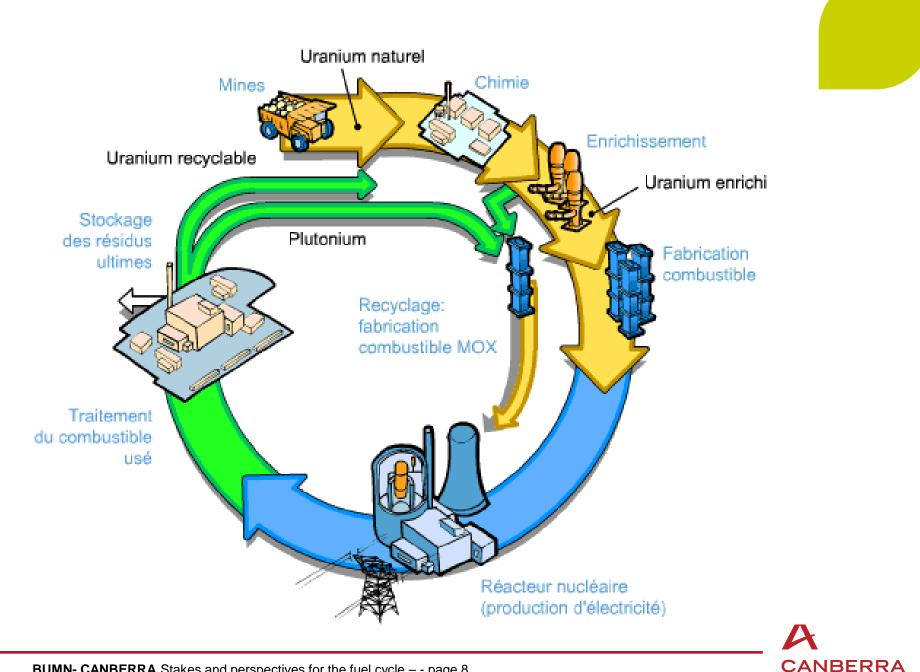
- Nuclear control of process
 - From safety-criticality constraints to follow up process
- Radiation monitoring systems
 - For NPP or fuel cycle facilities
- 🔶 Waste assay
 - From low level to high level waste activity systems
- Safeguards applications

Radiochemistry Laboratories

- Process control sampling and analysis
- Environmental analysis
- Medical analysis

Health's physics controls

- Dosimetry
- Portable measurements
- Air and environmental monitoring
- Fixed portal monitor for access control areas



2. Front end fuel cycle Mining, conversion, enrichment

Front End fuel cycle

Mining

Main activities

- in Niger, Canada, Kazakhstan
- From 1% to 20% of U per ton

Product :

• Yellow cake, concentrate at 80% of U3O8

Main needs

- Radiochemistry Labs
- Exploration for low grade uranium
- Borehole technologies
- Process measurement in the factory

Front End fuel cycle

Conversion

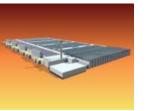
Main activities

- COMURHEX Malvesi : From Yellow cake to pure UF₄
- COMURHEX Pierrelatte : From UF₄ to UF₆

Comurhex

- Dissolution by HNO3 then TBP and NH3
- concentrate \rightarrow UO2(NO3)2 \rightarrow UO3 \rightarrow UO2
- Sur Pierrelatte
 - Hydrofluoration par HF : $UO2 \rightarrow UF4$
 - Fluoration par F2 : UF4 \rightarrow UF6 pur
 - Cristallisation de l'hexafluorure (cristaux incolores

Main needs


- Area monitoring
- Health's physics
- On line monitoring with simple measurements

Front End fuel cycle

Enrichment

- Objective : From 0,7 % to 4-5 % in U 235
- Possibility of isotopic separation by
 - Mass difference
 - Gaseous diffusion through a barrier : EURODIF
 - Gazeous ultracentrifugation : GBII
 - Difference of electromagnetic energy absorption
 - molecular or atomic selective ionization

Main needs

- UF6 enrichment measurement
- Labs analysis
- Area monitoring
- Criticality monitor
- Safeguards

kg d'U naturel

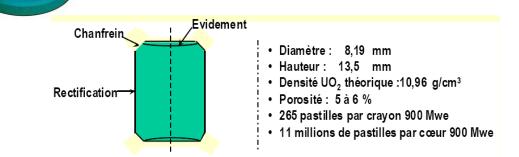
5 UTS

ka d'U enrichi

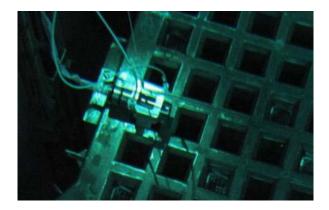
7 kg d'U appauvri à 0,25 %

3. Fuels and Reactors

Reactor and fuel fabrication

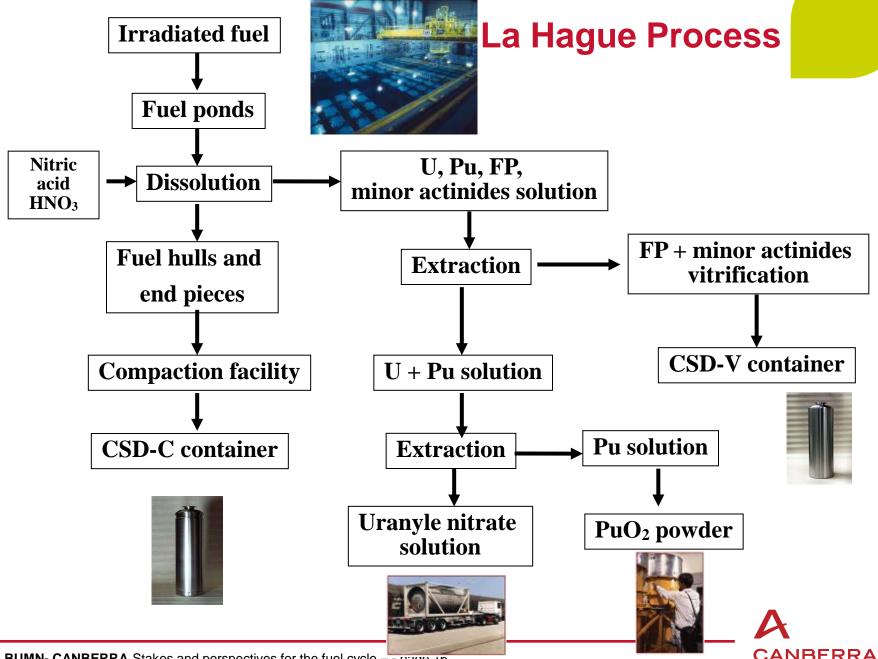


Fuel fabrication

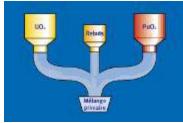

- Area monitoring
- Enrichment measurement
- Safeguards
- Criticality monitor

Reactor (current and future types)

- In core and excore controls
- Radiation Monitoring Systems
- Radiochemistry labs
- Burn-up measurement
- Safeguards

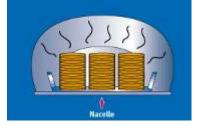


4. Back-end

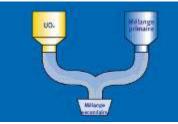


MOX process at MELOX plant

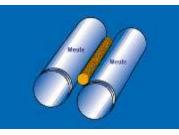
MOX : depleted UO₂ (from EURODIF) + PuO₂ (from La Hague)

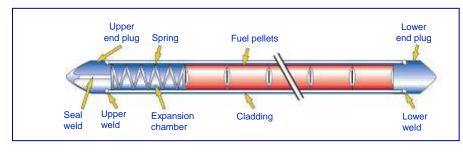

Correct proportioning of Pu grade and isotopic composition

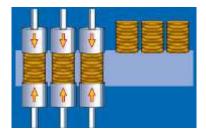
All the process is performed in glove box !

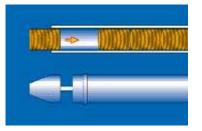


Preparation of powder mixtures


1


Sintering


2 Preparation of powder mixtures

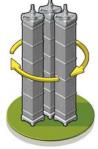

5 Grinding

Light water type fuel rod

3 Pressing or pelletizing

Back end fuel cycle

Reprocessing

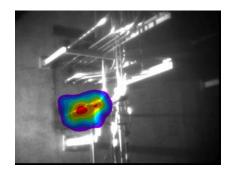

- 🔶 Labs
- Health's physics
- Area monitoring
- More integrated systems for
 - Process, Safety-criticality and Safeguards controls
- Decrease labs analysis via on line measurements
- New waste characterization methodologies
 - mainly for alpha and very low activity waste

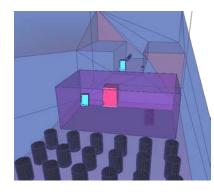
MOX fuel fabrication

Health's physics

- Hands and finger operational dosimetry
- On line Measurement in glove box
 - Hold up measurement
- Air monitoring
- Waste characterization

Nuclear measurements : Future needs


Maintenance, services, and D&D


- Equipment and maintenance
 - Pipe & valves monitoring
 - Waste characterization

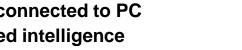
Services and D&D

- Investigation to define dismantling scenarios
- Follow up of decontamination
- Good waste package categorization

5. Which strategic orientation for nuclear measurement in the future

Need for innovation at all steps of detection chain

Detectors


- Germanium growth and Silicium technologies
- New types of scintillators (LaBr...)
- New gaseous and plastics detectors
- New cryogenic techniques
- Electrical fields and nuclear modeling

New integrated probes

- **Small integrated electronics**
- **Directly connected to PC**
- **Embedded intelligence**

New electronics

- **Digital electronics**
- High count rate
- Introduction of ASIC
- Use of standard building blocks

Need for innovation at all steps of detection chain

Software and network

- Real time data acquisition
- Algorithms
- Network protocols
- Common supervisory

Optimization of systems


- Nuclear modeling tools
- Combined measurement techniques
- Optimization of mechanics

Portable integrated systems

- Portable systems with embedded modeling
- Imaging systems

Conclusions

The nuclear measurement systems used to characterize radioactive materials are extremely varied.

The solutions adopted largely depend on:

- the purpose of nuclear measurement stations,
- the environment (radioactive environment, available room),
- the assumptions that can be made about the process (deduction of correlations between the variables measured and those to be characterized).

Consequently, the solutions adopted for a project may vary:

- from the simplest detector,
- to the most highly complex measurement and interpretation system.

Nuclear measurements are closely in link with

- R&D institute
- Nuclear safety staff
- Radiochemical laboratories
- Health's physics departments
- Engineering companies

