

- Généralités sur la radiochimie appliquée au cycle du combustible
- Les analyses radiochimiques : diversité des techniques de mesure

• Combustible nucléaire: exemples d'analyses radiochimiques mises en œuvre au LARC

Radiochimie : définition

DEC/SA3C/LARC

énergie atomique énergies alternatives

Étude des propriétés physico-chimiques des radioéléments et des aspects chimiques des transmutations et des réactions nucléaires (Larousse)

Chimie fondamentale (détermination des constantes réactionnelles, des caractéristiques nucléaires, paramètres d'influences réactionnels, étude de la radiolyse....)

Radiochimie : si définition prise au sens large, de

nombreux métiers et applications

<u>Radiochimie à l'échelle du procédé:</u> cycle du combustible
(traitement minier, chimie avant enrichissement, retraitement avec séparation et séparation poussée, chimie des actinides en sels fondus)

Chimie du combustible nucléaire: étude des différentes composés destiné à être utilisé en réacteur

<u>Analyse de radionucléides ou analyse chimique d'échantillons radioactifs</u> a caractérisation chimique et radiochimique d'un échantillon (combustible, déchet, effluent, prélèvement biologique et environnementaux...) par différentes techniques

CADARACHE

Les analyses radiochimiques

DEC/SA3C/LARC

énergie atomique énergies alternatives

CADKRACHE

Les analyses radiochimiques

DEC/SA3C/LARC

énergle atomique énergles alternatives

1			Développement analytique:														2
Н				mesure d'un radionucléide													He
3 Li	⁴ Be]		spécifique dans une matrice								⁵ В	6 C	7 N	⁸ O	9 F	10 Ne
11	12	-		défi	nie (1	mesu	ire n	uclé	aire (DU		13	14	15	16	17	18
Na	Mg			spectrométrie de masse)								AI	Si	P	S	CI	A
19	20	21 S o	22 Ti	23	24	25 Mp	26	27	28	29	30 7 n	31	32	33	34	35 Dr	36
n	Ca	30	11	V	Cr		ге	60	INI	Cu	Zn	Ga	Ge	AS	Se	DI	N I
37 Rh	³⁸	39 V	40 7 r	⁴¹ Nh	42 Mo		⁴⁴ Ru	⁴⁵ Rh	Pd	47 • • • •		49 In	50 Sn	51 Sh	52 To	53	54 XO
55			70	70	74	75	70	77	70	70		04				05	
°°Cs	Ba	Ln	⁷² Hf	Ta	W ⁷⁴	Re	^{/®} Os	^{′′} Ir	"Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88		104	105	106	107	108	109	110								
Fr	Ra	An	Rf	Db	Sg	Bh	Hs	Mt	Uun								
	•	•		•	•	•		•	•	-	•		•	•		<u>.</u>	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
		12	Co	Dr	Nd	Dm	Sm	Eu	Gd	Th	Dv	Ho	Fr	Tm	Vh	11	

Difficultés supplémentaires si échantillon solide: quelle minéralisation ?? ne pas perdre les éléments à mesurer lors de la minéralisation

CADARACHE

5

EFMMIN: cycle du combustible nucléaire 19/05/2011

énergie atomique

Spectrométrie y GeHp

Données d'entrée : Activité $\beta - \gamma$ totale 6,5 10¹⁰ Bg/g. Estimation à partir du code CESAR (version 4.32) : ⁵⁹Ni # 8000 Bg/g. d 'U, ⁹³Mo # 4500 Bg/g. d 'U, ⁹⁴Nb # 900 Ba/a. d 'U

Identification des principales difficultés : Facteur de décontamination des solutions >> 107 - 108 Contamination des gaines en ⁵⁹Ni : > 1 000 Bg/cm²

Opérations dans COMIR (caisson blindé) :

Carottage (extrusion mécanique sans toucher la gaine) 1.

- 2. Mise en solution -Dissolutions HNO_3 pour voie Nickel ([U] # 300 g/L) -Dissolution HNO₃ / HF pour voie Mo et Nb ([U] # 300 a/L)

3. Séparations chimiques

EFMMIN: cycle du combustible nucléaire 19/05/2011

Produits d'Activation d'Impuretés (PAI)

Analyses radiochimiques sur combustible irradié **DEC/SA3C/LARC** Solution de dissolution de combustible (HNO₃/HF) énergle atomique énergles alternatives Chromatographie sur résine cationique U – Pu – actinides mineurs Emetteurs y (Co, Cs, Sb ...) (HNO₃#10M) HNO₃#1M - HF#0.1M Mo - Nb (Ru - Rh - Sb)Changement de milieu HCI#1M - HF#0.1M Mesure Gamma Extraction liquide-Mesure alpha liquide Ru – Rh - Sb ⁵⁹Ni 1747630 Désextraction Mo H_2SO_4/H_2O_2 Mesure ⁹³Mo - ⁹⁴Nb traceur 1048578 stable Mo et Désextraction Nb 699052 Nb **Protocoles mis au** 349526 point et validés sur Conditionnement pour mesure matrice synthétique puis appliqué à Spectre γ pour mesure 94Nb Mesure ⁹⁴Nb - ⁹³Mo (Spectrométrie X-γ)

l'échantillon réel

CADXRACHE

EFMMIN: cycle du combustible nucléaire 19/05/2011

énergle atomique énergles alternatives Qualification des oxydes d'uranium utilisés pour la fabrication des combustibles nucléaires :

- Isotopie U : ICP-MS (mesure directe)
- Impuretés : séparation chimique de l'U / ICP-AES, ICP-MS

Exemple 1: Dosage des impuretés dans l'uranium

	Développer une méthode de dosage des impuretés qui		ppm /U
/	Developper une methode de dobage des impuretes qui	AI	< 20
	- ne génère pas de déchets analytiques sans filière	В	< 0,2
	d'évenuetion (columnts organiques conteminés en II)	Ca	-
	d evacuation (solvants organiques containines en U)	Cd	< 0,3
	- permet de répondre aux spécifications	Со	-
	permet de repondre dux specifications:	Cr	< 20
	Fytraction sur support abromatagraphique	Cu	< 20
	• Extraction sur support chromatographique	Fe	< 20
		Li	-
	<u>Stratégie analytique</u>	Mg	-
		Mn	< 20
1.	Pour la technique de mesure choisie, déterminer les	Мо	< 20
		Na	-
	<u>performances</u> (LD, LQ) pour les elements d'interet et les	Ni	< 20
	interférences spectrales et non spectrales induites par l'uranium	Si	< 20
	<u>interrerences</u> spectrales et non spectrales induites par i draman	Ti	< 5
2.	Mettre au point la méthode de <u>séparation</u> chromatographique	V	-
3	Valider la méthode sur des matériaux de référence	Zn	< 20
J.	<u>vanuer</u> la memoue sur des materiaux de reference		

\sim	\sim]	Imp	ure	tés d	ans l'uranium	DEC/SA3C/LARC					
énergie atomique énergies alternatives		Valeur cer	tifiée		/aleur	mesur /	Validation de la méthode sur matériau de référence						
		C cert B1		B2	B3 Moy		Oxydes d'uranium U_3O_8 – Cetama						
	AI	22.7 <u>+</u> 2.9	23.6	25.2	24.9	24.6	$(\mathbf{AGARIC} < 45)$	mg/kg U, BOLET :					
	В	1.09 <u>+</u> 0.12	1.02	0.96	0.98	0.99	245 r	ng/kg U)					
	Ca	12.4 <u>+</u> 1.3	15.0	14.7	13.6	14.4	Matériaux certif	iés en impuretés (30					
	Cd	0.53 <u>+</u> 0.09	0.42	0.45	0.45	0.44	élé	ments)					
	Co	1.02 <u>+</u> 0.11	0.87	0.93	0.93	0.91							
	Cr	9.37 ± 0.55 9.5 10.36 ± 0.77 8.7		9.6	9.4	9.5							
	Cu			8.9	8.7	8.7							
	Fe	54.84 <u>+</u> 1.88	52.5	53.2	52.0	52.6							
	Li	2.11 <u>+</u> 0.39	1.7	1.9	1.8	1.8	✓ Mise au point d'un	Mise au point d'une méthode qui répond aux					
	Mg	5.75 <u>+</u> 0.77	5.3	5.6	5.4	5.5	spécifications de pure	eté exigées pour les					
	Mn	4.66 <u>+</u> 0.37	4.5	4.8	4.7	4.7	combustibles nucléair	res et qui ne produit pas de					
	Мо	4.88 <u>+</u> 0.49	4.4	4.7	4.6	4.6	déchets analytiques di	ifficiles à gérer					
	Na	nc	3.5	3.5	3.3	3.4	✓ Validation de la m	éthode qui permet d'apporter					
	Ni	18.19 <u>+</u> 1.10	17.6	18.0	17.6	17.7	aux demandeurs les éléments attestant de le fichi						
	Si	28.6 <u>+</u> 5.1	18.8	18.8	18.4	18.7	dos régultats obtonus	iements attestant de la madime					
	Ti	5.09 <u>+</u> 0.64	4.7	5.0	4.9	4.8	des resultats obtenus.						
	V	4.55 <u>+</u> 0.33	4.5	4.7	4.6	4.6							
	Zn	9.55 <u>+</u> 2.58	9.1	9.7	9.3	9.4							

EFMMIN: cycle du combustible nucléaire 19/05/2011

CADARACHE

énergle atomique énergles alternatives

Isotopie de l'uranium

DEC/SA3C/LARC

Exemple 2: Isotopie de combustible vierge

The Détermination précise de la composition isotopique en uranium (enrichissement en ²³⁵U, isotopes mineurs ²³⁴U, ²³⁶U) par ICP-MS MC

CADARACHE

CADKRACHE

14

EFMMIN: cycle du combustible nucléaire 19/05/2011

énergie atomique énergies alternatives

Conclusions concernant les analyses radiochimiques

- Elles sont le plus souvent « destructives » pour les échantillons
- Elles nécessitent la plupart du temps une/des séparations chimiques des éléments à mesurer
- Elles ne sont « opérationnelles » qu'après de multiples étapes de définition, mise au point, qualification et validation de méthode.

The correspondent quasiment jamais à un processus unique de mesure

Exemples d'applications:

- le suivi de procédé industriel, en complément des suivis en ligne,
- le suivi environnemental,
- Etude de comportement des colis de déchets radioactifs
- R&D liée au combustible (exemple: validation des codes de calcul fournissant un inventaire élément/isotope après irradiation par confrontation valeurs expérimentales/valeurs calculées, réduction des incertitudes)

>Elles viennent généralement en complément des caractérisations µstructurales (<u>voir exposé I. Aubrun</u>) et analyses sur solide, mieux adaptées aux études de comportement « local » des éléments ou radionucléides.

