DE LA RECHERCHE À L'INDUSTRIE

LES MESURES NUCLÉAIRES NON DESTRUCTIVES POUR LE CONTRÔLE DES DÉCHETS RADIOACTIFS, L'ASSAINISSEMENT ET LE DÉMANTÈLEMENT DES INSTALLATIONS

Bertrand PEROT, CEA DEN CADARACHE

EFFMIN 4 | MARSEILLE, FRANCE | 18-21 JUILLET 2016

www.cea.fr

CONTENTS

□ Photon imaging

Gamma-ray spectroscopy

Passive and active neutron measurements

Coupling measurement results

□ R&D on new techniques

C e Z

TRANSMISSION RADIOGRAPHY AND DENSITOMETRY

PHOTON TRANSMISSION TOMOGRAPHY

⁶⁰CO IMAGING: PRECISE DENSITY BUT LONG

TRANSEC: historic ⁶⁰Co tomography system of LMN, CEA DEN CADARACHE

cea

HIGH ENERGY X-RAY IMAGING WITH A LINAC

CINPHONIE: recent high energy imaging system of LMN, CEA DEN CAD

CINPHONIE Vs. TRANSEC:

- □ Radiography: 240 × faster (40 h \rightarrow 10 min)
- □ Tomography: 36 × faster (15 h \rightarrow 25 min)

Scintillation plate (800 x 600 mm²) Gadox Gd₂O₂S ; 1.5 mm

Nicolas Estre, Daniel Eck, Jean-Luc Pettier, Emmanuel Payan, Christophe Roure and Eric Simon, High-Energy X-Ray Imaging Applied to Non Destructive Characterization of Large Nuclear Waste Drums, ANIMMA 2013, 23-27 June 2013, Marseille, France

| PAGE 6

Concrete waste: density > 2

Less than 1 s per single radiography

Radiography

Tomography

IN SITU HIGH ENERGY X-RAY IMAGING

Bituminized waste drum characterization at BELGOPROCESS facility, Belgium

Radioscopy of the corium - water interaction Nuclear accident studies, KROTOS facility, CEA Cadarache

COMPUTED GAMMA EMISSION TOMOGRAPHY

R. Thierry, J.L Pettier and L. Desbat, Simultaneous compensation for attenuation, scatter and detector response for 2D-emission tomography on nuclear waste with reduced data, 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, April 14-17, E1 :542-551, 1999

| PAGE 9

PHOTON IMAGING

GAMMA SPECTROSCOPY

PASSIVE AND ACTIVE NEUTRON MEASUREMENTS

COMBINED MEASUREMENTS

R&D

GAMMA-RAY SPECTROSCOPY

Radioactive object

(e.g. a waste package)

Detector and electronics

RADIOACTIVE WASTE CHARACTERIZATION

Specific gamma spectroscopy stations the laboratory
Part of combined measurements e.g. for ANDRA
"Super-Controls" with X-ray imaging and neutron assay

cea

IN SITU γ SPECTROSCOPY IN NUCLEAR REACTORS

- Historic activity > 300 campaigns (end of 70's)
- **EDF** and foreign power plants
- EMECC device & software
 - > Intermediate activities (1 MBq/m² \rightarrow 100 GBq/m²)
 - Pipes, steam generators, heat exchangers...
 - Characterization of a whole plant (all circuits)
 - Deposited or volumetric activities (GBq / m² or m³)
 - Experimental qualification by EDF
 - Support to OSCAR contamination transfer code

IN SITU γ SPECTROSCOPY OF LARGE COMPONENTS

Uranium hold-up measurement in a heat exchanger

607

Segmented gamma spectrometry

SFR cold trap characterization HP Ge + CZT in inspection hall

Vessel contamination and activation

Underwater HP Ge gamma-ray spectroscopy

Characterization of activated components TORE SUPRA wastes – HP Ge

cea

IN SITU γ SPECTROSCOPY OF NUCLEAR MATERIALS

Dismantling operations

Fuel fabrication and reprocessing units

HP Ge detector

⇒ isotopic composition, activity or mass

CZT probe introduced in glove boxes
localization

Characterization of Pu in glove boxes of a Pu fuel fabrication facility

Fissile mass estimation in a reprocessing unit

IN SITU γ SPECTROSCOPY FOR BUILDINGS

Inside After removing all components

Outside Walls control

High efficiency HP Ge with tungsten shield

PHOTON IMAGING

GAMMA SPECTROSCOPY

PASSIVE AND ACTIVE NEUTRON MEASUREMENTS

COMBINED MEASUREMENTS

R&D

MIXED PASSIVE & ACTIVE NEUTRON CELL (R&D)

PASSIVE NEUTRON MEASUREMENT

□ Total counting

Spontaneous fission + (α ,n) neutrons \Rightarrow ^{242 and 244}Cm, ^{238, 240 and 242}Pu, ²⁴¹Am (+ ²³⁸U if mass > kg)

□ Coincidence counting

Spontaneous fission neutrons only

⇒ ²⁴² and ²⁴⁴Cm, ^{238, 240} and ²⁴²Pu (+ ²³⁸U)

ACTIVE "DIFFERENTIAL DIE AWAY TECHNIQUE"

Prompt and delayed neutron signals ⇒ ²³⁵**U and** ²³⁹**Pu discrimination**

- **Prompts neutrons** \Rightarrow ²³⁵U, ^{239 and 241}Pu
- **Delayed neutrons** \Rightarrow ²³⁵U, ^{239 and 241}Pu + ²³⁸U and ²³²Th

CALIBRATION WITH DIFFERENT MATRIX MATERIALS

- □ F. Jallu et al. / Nuclear Instruments and Methods in Physics Research B 271 (2012) 48-54
- A.-C. Raoux et al. / Nuclear Instruments and Methods in Physics Research B 266 (2008) 4837-4844
- R. Antoni et al. Matrix effect correction with internal flux monitor in radiation waste characterization with the Differential Die-away Technique, IEEE Transactions on Nuclear Science, Vol. 61, No. 4 (2014) 2155-2160

Passive detection	Detection efficiency (%)		
Matrix	Measured	Calculated	
Empty cavity	10.13 ± 0.22	10.27 ±0.01	
PVC1 (d = 0.412)	9.05 ± 0.20	9.19 ± 0.01	
PVC2 (d = 0.082)	10.37 ± 0.23	10.54 ±0.01	
WOOD1 (d = 0.365)	8.92 ± 0.20	8.88 ± 0.01	
WOOD2 (d = 0.147)	10.44 ± 0.23	10.65 ±0.01	
Metal ($d = 0.622$)	10.49 ± 0.23	10.67 ±0.05	

PASSIVE & ACTIVE NEUTRON CELL

IN SITU PASSIVE / ACTIVE NEUTRON SYSTEMS

PACCMAN, **COQUINA**: active neutron interrogation systems plugged to hot cells to assess Pu and U in high level wastes

LMN, CEA DEN CADARACHE ATALANTE, CEA DEN MARCOULE

IN SITU NEUTRON MEASUREMENTS

Characterization of large components in uranium enrichment facilities $(UF_6 \text{ gas diffusion technology})$

Passive neutron measurement of the uranium hold-up in UF₆ compressors

Passive (and active) neutron measurements of uranium holdup in an UF₆ crystallizer

Measurement of the uranium enrichment in an UF₆ container by active neutron interrogation

F. Jallu et al., Dismantling and decommissioning: The interest of passive neutron measurement to control and characterise radioactive wastes containing uranium, Nuclear Instruments and Methods in Physics Research B 271 (2012) 48–54

PHOTON IMAGING

GAMMA SPECTROSCOPY

PASSIVE AND ACTIVE NEUTRON MEASUREMENTS

COMBINED MEASUREMENTS

R&D

RADIOACTIVE WASTE CARACTERISATION X-RAY RADIOGRAPHY + γ SPECTROSCOPY + PASSIVE NEUTRON COUNTING

X-ray radiography

PEGAZE 100 L historic waste drums, CEA DEN CADARACHE

COMBINED MEASUREMENT SYSTEM γ RADIOGRAPHY + γ SPECTROSCOPY + ACTIVE & PASSIVE NEUTRON CELL

> 60,000 historic 225 L bituminized waste drums (Marcoule, France)

Non Destructive Assay performance study

Passive & active neutron cell ⇒ Pu, U

- Graphite and polyethylene cell
- 99 ³He counters + Pb and Cd shields
- Pulsed 2.10⁹ n/s neutron generator

B. Pérot, J.-L. Artaud, C. Passard, A.-C. Raoux, Experimental Qualification With a Scale One Mock-Up of the "Measurement and Sorting Unit" for Bituminized Waste Drums, <u>http://dx.doi.org/10.1115/ICEM2003-4597</u>

COUPLING MEASUREMENT RESULTS

PHOTON IMAGING

GAMMA SPECTROSCOPY

PASSIVE AND ACTIVE NEUTRON MEASUREMENTS

COMBINED MEASUREMENTS

A FEW R&D TOPICS

DUAL ENERGY IMAGING (SATURNE LINAC PROJECT)

Mass attenuation coefficient µ/p

LINAC acquisitions at 15 MeV and 9 MeV

Atomic number Z (simulation of a 870 L drum)

N° insert	matériau	Z _{eff} théorique	Z _{eff} calculé	
1	PVC	12	15.90 ± 11.3%	
2	Cellulose	6.68	7.05 ± 15%	
3	plastique	9.3	9.96 ± 11.1%	
4 CH ₂		5.28	5.46 ± 15.5%	

HIGH ENERGY X-RAY TOMODENSITOMETRY

Attenuation up to 5 decades (40 cm steel)

- Radiography and 2D plane tomography
- 3D helicoidally tomography
- 0.5 to 2 mm spatial resolution
- 1 h (2D) to several days (3D) acquisitions

ACTIVE PHOTON INTERROGATION: PHOTOFISSION

- U and Pu measurement in large concrete waste packages
- □ **High energy X rays** produced by an electron LINAC (photofission threshold ~ 6 MeV)
- **Delayed neutron counting** between the pulses
- □ Delayed gamma-ray spectroscopy after stopping irradiation

15 MV Linac beam (970 L drum) U in the center		Background & detection limit - 1 detector			Backgr. & detection limit - 5 detector cluster		
(870 L diuili)	γ ray (keV)	B (counts)	L _n (counts)	L _D (g ²³⁵ U)	B (counts)	L _D (counts)	L _D (g ²³⁵ U)
	1384	80	44	0,92	240	75	0,312
	1436	116	53	0,84	580	115	0,36
	1768	64	40	7,98	320	86	3,43
	1791	64	40	7,98	320	86	3,43
	1807	60	39	6,45	300	83	2,78
	2016	96	48	9,66	480	105	4,18
	2032	100	49	8,21	500	107	3,56
	2176	34	30	9,94	170	63	4,22
	2196	32	29	2,89	158	61	1,22
	2218	34	30	1,74	168	63	0,74
	2392	36	31	1,70	180	65	0,72
	2308	36	31	2 35	180	65	1.00

E. Simon, F. Jallu, B. Pérot, S. Plumeri, Feasibility study of fissile mass quantification by photofission delayed gamma rays in radioactive waste packages using MCNPX, submitted to Nuclear Instruments and Methods in Physics Research A

| PAGE 32

NEUTRON ACTIVATION ANALYSIS

[keV]

- □ Toxic chemical or matrix material characterization in radioactive wastes
- **PGNAA** Prompt Gamma Neutron Activation Analysis
- □ Pulsed neutron generator + HP Ge gamma-ray detector

J.-L. Ma et al., Prompt Gamma Neutron Activation Analysis of toxic elements in radioactive waste packages, Applied Radiation and Isotopes 70 (2012) 1261

- Fast neutrons during the pulses \Rightarrow (n,n' γ)
- Thermal neutrons between pulses \Rightarrow (n, γ)
- (+ deactivation gamma rays after irradiation)

REGAIN cell, CEA DEN CAD, LMN

1.0

CEA- FZJ COLLABORATION ON PGNAA

and MCNPX simulations, Journal of Radioanalytical and Nuclear Chemistry, DOI 10.1007/s10967-015-4451-4

8000

NEUTRON-INDUCED FISSION DELAYED γ -RAY YIELDS

□ Gamma spectra of ²³⁵U and ²³⁹Pu samples measured in REGAIN between neutron pulses

T. Nicol, B. Pérot, C. Carasco, E. Brackx, A. Mariani, C. Passard, E. Mauerhofer, A. Havenith, ²³⁵U and ²³⁹Pu characterization in radioactive waste using neutron-induced fission delayed gamma rays, Nuclear Instruments and Methods in Physics Research A 832 (2016) 85-94

| PAGE 35

FISSION DELAYED *γ***-RAY DETECTION LIMITS**

□ MCNP calculations (MEDINA, 225 L drums)

□ Active background (MEDINA, 225 L concrete mockup drum, measurement between pulses)

Detection limits in a 225 L concrete drum, with a 2·10⁸ n/s emission, 7200 s irradiation, 900 s post irradiation counting

E (keV)	Precursor	T _{1/2} (s)	DL ²³⁹ Pu (g)	DL ²³⁵ U (g)
830	⁹⁰ Rb- ^{90m} Rb	156-258	154.2	71.3
952	⁹⁵ Y	618	192.2	197.2
973	¹³² Sb- ^{132m} Sb	168-252	66.3	86.7
1032	⁸⁹ Rb	924	287.3	202.3
1312	136 _ 136m 	84-47	67.9	84.2
1384	⁹² Sr	9756	24.1	19.0
1427	⁹⁴ Sr	75	21.5	18.7
1614	¹⁰⁴ Tc- ¹³⁴ I	1092-3156	54.8	108.5

T. Nicol, B. Pérot, C. Carasco, E. Brackx, A. Mariani, C. Passard, E. Mauerhofer, A. Havenith, ²³⁵U and ²³⁹Pu characterization in radioactive waste using neutron-induced fission delayed gamma rays, Nuclear Instruments and Methods in Physics Research A 832 (2016) 85-94

cor

THE ASSOCIATED PARTICLE TECHNIQUE (APT)

B. Pérot, *G.* Sannié, Détection neutronique de matières illicites avec la technique de la particule associée, Editions Techniques de l'Ingénieur, RE 177, février 2015

ORGANIC MATERIALS IDENTIFICATION (SECURITY)

Atomic fractions

RADIOACTIVE WASTE MATERIAL CHARACTERIZATION

□ Feasibility study on non-radioactive materials (experiments)

C. Carasco, B. Pérot, A. Mariani, W. El Kanawati, V. Valkovic, D. Sudac, J. Obhodas, Material characterization in cemented radioactive | PAGE 39 waste with the associated particle technique, Nuclear Instruments and Methods in Physics Research A 619 (2010) 432-435.

PERFORMANCES FOR RADIOACTIVE WASTE PACKAGES

□ MCNP simulations for 225 L bituminized waste drums (~ 1 TBq ¹³⁷Cs)

CO2 PERFORMANCES FOR RADIOACTIVE WASTE PACKAGES

□ MCNP simulations for 225 L bituminized waste drums (~ 1 TBq ¹³⁷Cs)

cea

SIMULATION OF OBJECTS IN THE 225 L BITUMINIZED DRUM

W. El Kanawati, B. Perot, C. Carasco, Monte Carlo Simulation of High-Level Radioactive Waste Characterization with the Associated Particle Technique, Nuclear Instruments and Methods in Physics Research A 705 (2013) 61–73.

OBJECT IN THE CENTER OF THE BITUMINIZED DRUM (MCNP)

W. El Kanawati, B. Perot, C. Carasco, Monte Carlo Simulation of High-Level Radioactive Waste Characterization with the Associated Particle Technique, Nuclear Instruments and Methods in Physics Research A 705 (2013) 61–73.

SCINTILLATORS TO REPLACE ³HE DETECTORS

³He proportional counters **Plastic Scintillators Passive neutron coincidence** counting for radioactive waste drums - MCNP PoliMi simulation 118 L waste drums 10 cm thick plastic detectors (with lead shields) ~ 0.5 g of ²⁴⁰Pu_{eq} ÌÌ **GOOD EFFICIENCY GOOD EFFICIENCY** Ĩ 1500 s acquisition time CHEAP (~ factor 5 wrt. ³He) EXPENSIVE (since 09/11/2001) (ð SLOW RESPONSE (~ µs) FAST RESPONSE (~ns) (thermalization needed) (recoil proton) VERY SENSITIVE UNSENSITIVE **TO y RAYS AND TO y RAYS AND** (ð **CROSS-TALK CROSS TALK**

0.2 g/cm³ organic matrix

Multiplici	ty Pu only	Am only	Mix (Am, Pu)
0	$178,516 \pm 423$	$299,817 \pm 548$	478,372 ± 692
1	$11,744 \pm 108$	$2,795 \pm 53$	$14,777 \pm 122$
2	372 ± 19	12 ± 3	365 ± 19

└→ Triples (multiplicity 2 coincidences)

	Multiplici	ty Pu only	Am only	Mix (Am, Pu)
	0	$232,383 \pm 482$	$450,562 \pm 671$	684,157 ± 827
	1	$32,356 \pm 180$	$3,675 \pm 61$	$36,287 \pm 190$
	2	$2,400 \pm 49$	9 ± 3	$2,365 \pm 49$
	3	66 ± 8	0	66 ± 8
- 1		l I		

0.5 g/cm³ metallic matrix

B. Simony, C. Deyglun, B. Pérot, C. Carasco, N. Saurel, S. Colas, J. Collot, Cross-talk characterization in passive neutron coincidence counting of radioactive waste drums with plastic scintillators, IEEE Transactions on Nuclear Science, Vol. 63, No. 3, June 2016

| PAGE 44

□ Few accidental coincidences up to 10 g of Pu

Good signal to noise ratio (Pu/Total)

Neutron vs. gamma events in the triples

Plutonium localization effect

POSTER Benoît SIMONY – EFFMIN 4 <u>benoit.simony@cea.fr</u>

CONCLUSION

Radioactive and nuclear material characterization

- Gamma-ray spectroscopy
- Passive neutron counting
- Neutron and photon interrogation

Physical and elemental characterization

- Imaging techniques: gamma, X-ray
- Neutron activation analysis

NDA for D&D and radioactive waste characterization

- Complementary to sampling & analytic methods
- Sensitivity, precision, accuracy Vs. complexity, acquisition time, cost

⇒ The "dream team" = historic operators + NDA experts + D&D operators

EFFMIN4 | MARSEILLE | 18-21 JUILLET 2016

THANK YOU !

bertrand.perot@cea.fr

CEA International Expert

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | F-13108 Saint-Paul-lez-Durance FRANCE T. +33 (0)1 4 42 25 66 43 | Laboratoire de Mesures Nucléaires

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

Direction de l'Energie Nucléaire Département de Technologie Nucléaire Service Mesures et Modélisation des Transferts et des Accidents Graves